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Introduction to large hydro E=P-t=Q-H-y-pu-t

Basic notions

« Storage vs. run-of-the-river.

* High vs. low head.

« Embankment / concrete gravity / concrete
arch.

https://www.icold-cigb.org/GB/world_register

M Earth dams (37984)

I Rockfill dams (7745)

M Gravity dams (8323)

M Buttress dams (473)
Barrages (300)

M Arch dams (2358)

M Multiple arch dams (129)
Others (1401)
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Bajracharya, Tri Ratna, Rajendra Shrestha, and Ashesh Babu Timilsina. "A Methodology for
Modelling of Steady State Flow in Pelton Turbine Injectors." Journal of the Institute of
Engineering 15.2 (2019): 246-255. 2022.04.11
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Introduction to large hydro

Relevance of large hydro

A dam with a height of 15 metres or greater from
lowest foundation to crest or a dam between 5
metres and 15 metres impounding more than 3
million cubic metres.

In April 2020 there were more than 58713 large
dams in the world.

https://www.icold-cigb.org/GB/world_register

Dam name

Reservoir Cap.

Resettled persons

Country

(103 md)

SANXIA 39 300 000 900 000 China

SANMENXIA 9 600 000 370000 China
DANJIANGKOU 33910000 347 200 China

XINANJIANG 21 626 000 271550 China

XIAOLANGDI 12650 000 175 600|China

KUIBYSHEV 58 000 000 150 000 |Russia (Russian Fed.)
ZHEXI 3570000 139 522|China

RYBINSK 25400 000 116 700 |Russia (Russian Fed.)
MANGLA 9120 000 110 000 |Pakistan
WUQIANGXI 4350000 107 048 |China
XINFENGJIANG 13 896 000 106 000|China

CHANGMA 194 000 96 000|China

XIANGJIABA 5185000 89 800|China

XIJIN 3000 000 89 323|China

LONGTAN 29920 000 75100 China

ROSEIRES 1250 000 70000 Sudan

BAIHETAN (C) 18 800 000 69 000|China

SHUIKOU 2340000 67 239|China
HUALIANGTING 2398 000 61 124|China

VOTKINSK 9 400 000 61 000 Russia (Russian Fed.)

2022.04.11




Introduction to large hydro

Relevance of large hydro

M Flood control (2539)

W Hydropower (6115)

M Irrigation (13580)

M Fish farming/navigation/tailing (241)
Recreation (1361)

M Water supply (3376)

M Others (1579)

Single-purpose

https://www.icold-cigb.org/GB/world_register

M Flood control (4911)

W Hydropower (4135)

M Irrigation (6278)

M Fish farming/navigation/tailing (2078)
Recreation (3035)

W Water supply (4587)

I Others (1385)

Multi-purpose

2022.04.11



https://ren.pt/pt-PT/o_que_fazemos/eletricidade/

Introduction to large hydro
Relevance of large hydro

* The peak of construction of large dams has clearly passed.
» Because in many places there are no more technically feasible locations.
» Because other sources of energy have emerged.
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Introduction to large hydro

Europe Installed capacity 2020 (MW)

Relevance of large hydro

Europe: 2020 Hydropower installed capacity (MW) by country ‘,:‘
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Introduction to large hydro
Relevance of large hydro

Load Diagram on the Day of Annual Peak Demand

MW 13 janeiro 2020 15 janeiro 2019
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Introduction to large hydro

Relevance of large hydro

Day-ahead minimum, average and maximum price
Portugal
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® The data of 2007 make reference to the period July-December. https://www.omie.es/en/market-results/interannual/daily-market/daily-prices?scope=interannual&system=2



Introduction to large hydro

Relevance of large hydro

 Large hydro is relatively expensive and displays a slow return on
Investment.

« Safety concerns are legitimate.

* There are environmental and social issues that must be addressed.

« Without large hydro it is difficult to store water (e.g., for drinking water
supply or agriculture).

 Large (and small) hydro still have a major role in energy production in
certain regions.

* It can be used to stabilize electricity grids like almost no other
technology. 2022.04.11
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Building a dam

Data collection

. Essentlal for sound design and av0|d|ng
“surprises”. =

« Water availability.

* Extreme events.

» Geological conditions.

« Sediment transport.

« Environmental concerns.
 Climate change (glaciers).

2022.04.11



Building a dam
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Building a dam

About licensing and investment

« Long-term commitment with a slow return on investment.

 Capital-intensive endeavor, often with the support of international
institutions (World Bank, EBRD, AfDB, ADB, etc.) or private investors.

* Licensing requires that a project is developed to a large extent, and
substantial investment is required before it is even obtained.

» The whole process can take decades. It is not uncommon that phases
/ activities overlap each other.

 This is challenging and can lead to “cutting corners”.

2022.04.11
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Operating a hydropower system

Drivers of the operation

» Safety (preventing failures at all costs);

« Fulfilling its goals (e.g., hydropower production or storage for
Irrigation or water supply);

« Maximizing profits;

* Ensuring long-term sustainability:
« Sediment management;
* Rehabilitation whenever required,
 Retrofitting.

 Very often dam operations can be anything but simple.

2022.04.11



Operating a hydropower system

Drivers of the operation
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Operating a hydropower system

Drivers of the operation

« Seasonal operation
« Summer inflows.

Volume [m?]
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Operating a hydropower system
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Operating a hydropower system
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Operating a hydropower system

Drivers of the operation
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Operating a hydropower s

Droughts and long-term reliability

» One of the key capabilities of dams
(or rather, the reservoirs they hold) is
to “transfer” water from wet periods to
dry ones.

» This is done at a cost (evaporation)
and has limits (active volume).

« Mis-management of reservoirs (or
“bad luck”) can result in critical water
shortages.




Operating a hydropower system

Droughts and long-term reliability 2
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Figure 17.7.4 Mass curve and constant yield lines (from U.S. Army Corps of Engineers, 1977).

Larry W. Mays. Water Resources Engineering, 3rd edition (Wiley, 2019). Chapter 17.



Operating a hydropower system

Droughts and long-term reliability

Maximum water surface

\ Top induced surcharge
\ Top flood control

Surcharge

Top
conservation

(Top buffer) 7, Conservation zone

Malawi Lake (8400 km3). Outflows to the
Shire River interrupted from 1908 to 1935.

https://openknowledge.worldbank.org/handle/10986/14649
K. Sene, et al.; Long-term variations in the net inflow record for Lake Malawi. Hydrology Research 1 June 2017;
48 (3): 851-866

Figure 17.7.1 Reservoir storage allocation zones (from U.S. Army Corps of Engineers (1977)).



Operatlng a hydropower system

== Mean annual discharge
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Operating a hydropower system

Droughts and long-term reliability

 The case of the Kariba reservoir.

« Largest man-made reservoir in the
world by volume (180 km3).

» Used mostly for hydropower
production.

* |[ts importance to the regional
economy (Zambia and Zimbabwe)
cannot be overstated.



Operating a hydropower system

Droughts and long-term reliability

9000 :
@= == == | ong-Term Mean
8000 - — 1961/62
1968/69
7000 — 1977/78
+— 1985,
6000 - 2008/09
+—— 2009/10
@ 5000 2012/13
é 2014/]5
; e —
2 4000 2015/16
2020/21 upto 6/5/2021 |._ 2016/17
+—2017/18
3000
- 2018/19
e 2019/20
2000
1000
0 A

OoCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP http://www.zambezira.org
https://infoscience.epfl.ch/record/201642?In=en
Noret, C., Girard, J.-C., Munodawafa, M.C., Mazvidza, D.Z., 2013. Kariba dam on Zambezi river: stabilizing the natural plunge pool. La Houille Blanche, 34-41.



Operating a hydropower system

Droughts and long-term reliability
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Operating a hydropower system

Floods

* Floods are a big issue.
» Fortunately, they are rare.

 Dams can be used to
“laminate floods”, but how
this works in practice is very
complex.




Operating a hydropower system
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Larry W. Mays. Water Resources Engineering, 3rd edition (Wiley, 2019). Chapter 9.



Operating a hydropower system

Floods

« Example of the July 2021 floods in
Central Europe. A look at Wallonia,
where 39 lives where lost.

30
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MNata
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Operating a hydropower system

Floods
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Operating a hydropower system

Floods
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Operating a hydropower system

Floods ROC, CURVE
10 =" ® ~g—=PERFECT CLASSIFIER— i‘ - zf-}; -

« Difficult decisions have to be
made quickly and under
extreme uncertainty.

TRUE POSITNE RATE

» The receiver operating
characteristic (ROC) can

1 1 1 ] 1
hel P. 0.0 02 ou 06 0.8 10
FALSE POSITIVE RATE

A flood is expected and no flood comes.

Martin Thoma. https://commons.wikimedia.org/wiki/File:Roc-draft-xkcd-style.svg 2022.04.11
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Précipitations|mm/72h]

Operating a hydropower system

Floods

350

4
=

 Back to Wallonia. Unforeseen event.

Z

 Climate change was blamed.
» Why?

Z 8

Précipitations [mm/72h)

Période de retour [années]

1 10 100 1000
Période de retour [années]
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Operating a hydropower system

Sediment management

« Sediment can:
« Damage equipment;

* Reduce the storage capacity of
reservoirs;

« Cause water quality problems;

» Lead to morphological and
environmental problems downstream.




Operating a hydropower

Sediment management

« Sediment can:
« Damage equipment;
» Reduce the storage capacity of
reservoirs;
« Cause water quality problems;

» Lead to morphological and
environmental problems downstream.

= 5-\\'- A SRR B “\ 2
Invert hydro-abrasion at Palagnedra sediment bypass tunnel (VAW, ETHZ)
https://vaw.ethz.ch/en/research/hydraulic-engineering/research-projects.html

W T



Operating a hydropower system

Sediment management

» Reservoirs tend to fill up

920

with sediments over 500
time.

860 -

* The issue is particularly - Eo =]

problematic in § o
mountainous and/or 3.,
arid regions. i
» Even very large -
reservoirs can be 660 -

affected.
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Total sediment discharge during the year [%]

Operating a hydropower system

Sediment management 10000

 Very punctual phenomenon.

10000

e Can be difficult to measure.

100 -
A few high concentration 1000
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Operating a hydropower system

Sediment management

 Very punctual phenomenon. . .av?
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Environmental flows

The case of the Kafue Flats, in Zambia




Environmental flows

The case of the Kafue Flats, Zambia

* Not only about quantity but also
timing and many other
characteristics.

Munga
Itezhi-tezhi
Dam Kafue Gorge
— hydroelectric
O Estimated extent '~" & power station
of the Kafue Flats ®

2022.04.11




Environmental flows

The case of the Kafue Flats, Zambia

Photos by Wilma Blaser

2022.04.11



Environmental flows

The case of the Kafue Flats, Zambia

* Not only about quantity but also

timing and many other o
characteristics. 2
%4000
gzooo

 Difficult choices must be

o

made. 5o |
T
 Optimization can help. g
§ 140
120

10/1991 10/1992 10/1993 10/1994 10/1995 10/1996 10/1997 10/1998 10/1999 10/2000

2022.04.11
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Climate change

Importance for large hydro
Scenarios and models
Working with the data

So, should | build a dam?




Climate change

Matters a lot for large hydropower

« Enormous potential impacts for
large hydro.
 Evolution of water availability:
* precipitation, evaporation and glacier retreat.
* Inter-annual / seasonal variability:
* Firm energy supply — droughts.
* Extreme events:

» Changes in the likelihood of floods and the
severity of droughts.




Climate change

- Figure 2-1: Model chain to assess the effects of climate change on water management
Scenarios and models

Uncertainties emerge in every process step, starting with the selection of the emission scenarios to be input into the global climate models, then
the regionalisation process (improving the resolution) as a pre-requisite for the hydrological modelling, and finally analysis of the effects on

water ecology or water management.

Emission Climate Local climate Hydrological simulations Effects
scenarios simulations scenarios and scenarios
Global and regional

climate models

~RCP8.5

0, -Auss o (GIC / Jahd
&

o w B

= RCP2.6

Statistical
downscaling

Sources of uncertainty

— Development of future greenhouse gas emissions — Initial conditions — Natural variability

- Model selection and structure — Model parameters - Process understanding

— Scaling and correction of model results — Data for calibration and validation — Unforeseeable events which tip
- Input data the balance of a system

FOEN (ed.) 2021: Effects of climate change on Swiss water bodies. Hydrology, water ecology and water management. FOEN, Bern. Environmental Studies No. 2101
https://www.nccs.admin.ch/nccs/fr/home/changement-climatique-et-impacts/schweizer-hydroszenarien.html



Climate change

Scenarios and models

=haseline scenarios - = additional scenarios of interest
: : | Shared Socioeconomic Pathways (CMIP6) [l &t |
« Shared Socioeconomic Pathways [2reC Socoeconomc Panays C1P0)

( S S P S) Wlth 5 cerons

« future climate radiative forcing (RF)
outcomes (RCPs)

Radiative forcing level in 2100 (W/m?)

SSP1| SSP2 | SSP3 | SSP4  SSP5

Middle of Regional . Fossil-fueled
the road rivalry Inequality development

Sustainability

Matthew J. Gidden et al., Global emissions pathways under different socioeconomic scenarios for use in CMIP6: a dataset of harmonized emissions trajectories through the end of the century,

Geosci. Model Dev., 12, 1443-1475, 2019, https://doi.org/10.5194/gmd-12-1443-2019
https://en.wikipedia.org/wiki/Coupled_Model_Intercomparison_Project#/media/File:SSPs-CMIP6.svg



Climate change

(a) Annual anthropogenic CO, emissions
. 200
Scenarios and models ' '
WGIII scenario categories: —_
B >1000
« Shared Socioeconomic B 720-1000
. = 580720 = 8
PathwayS (SSPS) Wlth ;O"T 100 530-580 %E
. . . 5 480530 =g
- future climate radiative forcing 3 = 120220 23
(RF) outcomes (RCPs) 2 2
R S S g
< = Historical RCP scenarios:
emissions —— RCP85
—— RCP6.0 L
—— RCP45
— RCP2.6
-100 L '
1950 2000 2050 2100
Year

IPCC, 2014: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, Il and Il to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland, 151 pp.



Climate change

Scenarios and models

Dr. David Viner 1998, 2002
Climatic Research Unit

{ > Ve
Rajczak,Jan & Kotlarski, Sven & Schér, Christoph. (2016). Does Quantile Mapping of Simulated Precipitation Correct for Biases in Transition https://www.wcrp-climate.org/wgcm-cmip/cmip-video
Probabilities and Spell Lengths?. Journal of Climate. 29. 160120095621001. 10.1175/JCLI-D-15-0162.1 https://www.ipcc-data.org/guidelines/pages/gcm_guide.html



Climate change

Scenarios and models

Region 1: South America
Region 2: Central America
Region 3: North America
Region 4: Africa

Region 5: Europe (EURO)
Region é: South Asia
Region 7: East Asia

Region 8: Central Asia

Region 9: Australasia

Region 10: Antarctica

Region 11: Arctic

Region 12: Mediterranean (MED)

Region 13: Middle East North Africa (MENA)

Region 14: South-East Asia (SEA)

https://cordex.org/



Climate change
Working with data for large hydro

Hydropower Sector

Climate
Resilience

Guide

https://www.hydropower.org/publications/hydropower-sector-climate-resilience-guide



Climate change
Working with data for large hydro

Project climate
risk screening

Does the project need a
climate risk assessment?

Monitoring,
reporting and
evaluation

Climaté. Climate risk

Initial analysis
y stress test management

https://www.hyd ydropower-sector-climate-resilience-guide



Climate change

Working with data for large hydro
* Climate projections # forecasts

MPIRCP4.5 KNMI RCP4.5 MPI RCP8.5 KNMI RCP8.5

Mean annual
temperature [°C]

18
1400

1200

W

'H,!ip."!'!i"'" h# |

800

Mean annual rainfall

600
1950 1960 1970 1980 1990 2000 2010 2020 2030 2040 2050 2060 2070 2080




C||mate Change A reference is required for the historical period:

« Ground data, gridded observations, or reanalysis.
Working with data for large hydro.

Correction of average values, seasonal distribution and
variability.

3.5 | —— CORDEX
CORDEX nao validado
w— ERA-INterim

26

C
w
o

W]
=

2.5

2.0 go
22

Temperatura [°C]

]
o
Variagdes de temperatura (o) [*C]

18

0 50 100 150 200 250 300 350 0
Dia do Ano (DdA) Dia do Ano (DdA)



Climate change

Working with data for large hydro

« How to match projections and
the reference?

« Different challenges for
precipitation and temperature.

 Precipitation:
» Quantile mapping.
* Problem when there are more
dry days in the projections.

* Temperature:

* Quantile mapping or linear
transformation.

* For QM: problem regarding
future extremes.

Precipitation [mm/day]

100

Max. values
Calibration data
————— Climate projection data
10
Climate projection value
-
Adjusted value
1
’I
’f
’l
. :
Fd : Quantile of the climate
4 : projection value
0.1 [ :
0.0 0.2 0.4 0.6 0.8 1.0

' Quantile [-] -

Proportion of dry days in the calibration data
2022.04.11



Climate change

So, should | build a dam?

« After validation we have a fair number of
projections for the chosen scenarios.

» Temperature, Precipitation...

» To get discharges we need.:
» A hydrologic model.

Input data.

Calibration data.

* Problem: calibration discharges do not match . / ----
historical projections. - -
« The model is: \‘;/ %,S\‘/ss
+ Calibrated with observations ;:\x\,, W
* But run with projections - \-w .
« They must agree! ,,’:'f A

2022.04.11



Climate change

So, should I build a dam?
« Second verification required after the hydrology is simulated.
« Average values, seasonal distribution and variability.

CNRM-CERFACS-CNRM-CM5_CNRM-ARPEGE51
300 CNRM-CERFACS-CNRM-CM5_SMHI-RCA4

ICHEC-EC-EARTH_DMI-HIRHAMS
~—— ICHEC-EC-EARTH_KNMI-RACMO22E
~— |CHEC-EC-EARTH_SMHI-RCA4
= |PSL-IPSL-CM5A-MR_IPSL-INERIS-WRF331F
250 ; — |PSL-IPSL-CM5A-MR_SMHI-RCA4

y ’ —— MPI-M-MPI-ESM-LR_MPI-CSC-REMO2009

200

150

Average inflow (1982-1992) [m*/s]
3

50

50 100 150 200 250 300 350 2022.04.11
DOY o



—— CNRM-CERFACS-CNRM-CM5_CNRM-ARPEGES1
—— CNRM-CERFACS-CNRM-CM5_SMHI-RCA4
—— ICHEC-EC-EARTH_DMI-HIRHAMS

—— ICHEC-EC-EARTH_KNMI-RACMO22E

-
11 |- —— ICHEC-EC-EARTH_SMHI-RCA4
—— IPSL-IPSL-CM5A-MR_IPSL-INERIS-WRF331F
—— IPSL-IPSL-CM5A-MR_SMHI-RCA4

So, should | build a dam?
 Smooth data and results...

Mean annual temperature [°C]

« Average different models for
uncertainty. ;

. g 6
» Do not focus on specific years
.
50 3.0
—— CNRM-CERFACS-GNRM-CMS_CNRV-ARPEGES
—— CNRM-CERFACS-CNRM-CMS5_SMHI-RCA4
25 —— ICHEC-EC-EARTH_DMI-HIRHAMS
2.5 | — ICHEC-EC-EARTH_KNMI-RACMO22E
—— ICHEC-EC-EARTH_SMHI-RCA4
—— IPSL-IPSL-CMSA-MR_IPSL-INERIS-WRF331F
20 20 | — PstPsLcusamR_swHiRCAL
N R_MPI

0.5

Temperature variation [*C]
Temperature variation [°C]

0.0

-0.5

2010 2020 2030 2040 2050 -1.0

2010 2020 2030 2040 2050
Year



Climate change

So, should | build a dam?
 “Clean” results often mask a huge uncertainty.

RCP 4.5

Precipitagao anual média [mm/ano]

400

200

o

=200

=400

1980

2000

2020

400

200

=200

RCP 8.5

1980 2000 2020 2040
Ano

2060 2080 2100

2022.04.11



Evolugao do escoamento [%]

Climate change

Once too skeptical, now a realist
« Example of discharge trends in Southern Africa.

40

40

Zona Zona
= Cahora Bassa norte = Cahora Bassa norte
30 —— Cahora Bassa sul 30 } ==—_(Cahora Bassa sul
—— Luenha = Luenha
= Luia w— uia
20 ! ! — RSWbue 20 4 b ~— Revubue
— Tete | — Tete
S
o
10 = 10
@
E
©
3
0 g o0
o
el
o
-10 g -10
°
>
w
=20 =20
-30 =30
-40 -40 :
1980 2000 2020 2040 2060 2080 2100 1980 2000 2020 2040 2060 2080 2100
Ano Ano

2022.04.11
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Risk of failure

What about risk?

Black swans and dragon kings
Consequences for large dams
It take courage to act




Risk of failure
What about risk?

Risk = Probability of
occurrence X Loss

Often, one or both aspects are
not correctly defined when risk is
"guantified".

What is risk?

R=(A,C U, P,K)

where:

A is an event that might occur

C is the consequences of the event

U is an assessment of uncertainties

P is a knowledge-based probability of the event

K is the background knowledge that U and P are based on

https://en.wikipedia.org/wiki/Risk

2022.04.11



Risk of faillure

Of black swans and dragon klngs BRI 7 A NEW SECTION: “ON ROBUSTNESS & FRAGILITY-
. BIaCk SWanS NEW YORK 'I"ll‘\I}:.\‘rltI"..\?'l'.\'l-'.l,l.l-'. R
« an event that comes as a surprise, has a major o
effect, and is often inappropriately rationalized BLACK SWAN
after the fact with the benefit of hindsight.
* some events cannot be predicted...
» and Dragon Kings ﬁ
- an event that is both extremely large in size or =
impact (a "king") and born of unique origins (a : THY Fapasl £ s
"dragon") relative to its peers (other events from HIGHLY IMPROBABLE
the same system).
 are generated by or correspond to mechanisms
(...) that tend to occur in nonlinear and complex
systems, and serve to amplify DK events to
extreme levels




Risk of faillure

Dams are dangerous

* The cases of Bangiao and Vajont




{ .

Risk of failure

Example: earthfill dam.

Hazards affect
the system

Urban area

Dam

Downstream area
(greater potential
losses)

S L S

Continues
downstream
2022.04.11



Risk of failure
Floods and geology

Failures of dams > 15 m high outside China

Number of: Masonry  Concrete Arch Buttress Fill dams  Fill dams  Reservoirs  Gates  Total Lives
gravity pravity  dams + multiple  >30m <30m failures  lost
dams dams arch dams

Dams 700 3000 KN 500 3000 9NN 17,200

Failures 18 7 4 9 42 117 2 5 204

Floods during

construction 16 5 2] 1300

Flood during

operation 7 | l 12 47 68 7300

Upstream

dam-break

waves 2 I 6 HHX)

r Earthquakes 1 2 3 I

War 2 2 2 6 1300

First filling 6 3 3 7 5 24 2 2 52 5500

Ageing (inc

piping) 1 ] 2 5 26 3 38 600

Unclassificd 10 10

Total lives

lost 4200 600 400 800 1500 6700 2700 100 17.000

Lempériere, F., 1999. Risk analysis: what sort should be applied to and to which dams?. Hydropower & Dams.



Landslide Risk Aversion

R IS k Of fal | u re 1E-2 ///://%i/é/ W / 1in 100
_ 00 UNACCEPTABLE 2
Acceptan ce I [ ] /f /Zﬁﬁ//f 1 Reduce risk below tolerable threshold 7| 1in 1,000
§ % /f//// %% without regard for cost 7
:. & 7 7 /
8 14 <t 1in10000
 ALARP concept: 3 4 %,;f/fé / //////’;///%////,/Q///
s i Men
« As low as reasonably g sy s”ke,:"fe,,-_ %l/( ,6’,,//;/?///: 4 //j/ ///7/ 1in 100,000
L e, 0000000
racticable. g RO
g g 1E-6 5// o %"%:/f"'r/, ot ///////////% 1in 1 Million
N QSN
. . 7 L (S . , ,/ j o
 Profound philosophical and £ " 7 sy, o 7 1in 10 Million
- . . . © v /////
political implications. N By B R
r 7 7 // 7 / 7 ///
1 7 % 7 7 7
« Not accepted in every country. . /{///// 27 N A
. . 1 10 100 1,000 10,000
¢ de faCtO Standard- Number of fatalities (N)

Strouth, A. And McDougall, Landslides. 2020.
https://link.springer.com/article/10.1007/s10346-020-01547-8

2022.04.11



Risk of faillure

Difficult to estimate

 (Very) simplified

representation of a dam-
reservoir system.

* Inter-actions.
* Intra-actions.

* Coincidences.

Elements
Hazards T
S
\\
Y
hY
B. outlet malfunction f \
Hydropower system
_1 _~ malfunction
(_
("
\\“_

Reservoir
\"\

and | |
ass_:'qciat‘edp
\\ damage y
\ (o s )
\
.\ 1w ‘ay severe
\\
\
\\

— Direct influence

—————=P» Variable influence

- Potential influence

processes




Risk of faillure

Difficult to estimate
* The effect of epistemic uncertainty and fragility on risk for a dam.

----- R — —REu REUF
E 2.8E-6 100 000 =’
2 BR OReu OREuF K
«= 2.4E-8 1oy
o = 80000 o e .
> ' ¥ ]
a 2.0E-6 ; { :’lll l"?'{';l’ ‘M,’,.’w“”"‘-"
@ o | yiAn PR
= = |
= 16E6 & 60000 !
) c /
> 1.2E-6 E;
& 2 40000
3 8.0E-7 js
O (1]
= 4.0E-7 £
g o T 20000
0
O 0.0E+0
+ O ¥ ¥ o+ F F o+ + 0
W W W WwWwWwWwWww w w
0N DN NN NN 10000 100 000 1000000 10000 000

Return period of the event [yr] Number of simulations [yr]

(R) reference case
(REu) epistemic uncertainty

(REUF) epistemic uncertainty and fragility 2022.04.11



Risk of faillure

It takes courage to act

* On how decisions are made.
* Low-probability high-
consequence events are hard
to address.

» Professionalism vs. personal
interest (not corruption).

* Roger Boisjoly and the o-rings
that led to the disaster of the
Challenger Space Shuttle
(1986).

https://commons.wikimedia.org/wiki/File:Challenger_explosion

Jpg
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